The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in RiceOPEN

نویسندگان

  • Ying Yang
  • Debao Fu
  • Chunmei Zhu
  • Yizhou He
  • Huijun Zhang
  • Tao Liu
  • Xianghua Li
  • Changyin Wu
چکیده

The photoperiodic response is one of the most important factors determining heading date in rice (Oryza sativa). Although rhythmic expression patterns of flowering time genes have been reported to fine-tune the photoperiodic response, posttranslational regulation of key flowering regulators has seldom been elucidated in rice. Heading date 1 (Hd1) encodes a zinc finger transcription factor that plays a crucial role in the photoperiodic response, which determines rice regional adaptability. However, little is known about the molecular mechanisms of Hd1 accumulation during the photoperiod response. Here, we identify a C3HC4 RING domain-containing E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), which physically interacts with Hd1. HAF1 mediates ubiquitination and targets Hd1 for degradation via the 26S proteasomedependent pathway. The haf1mutant exhibits a later flowering heading date under both short-day and long-day conditions. In addition, the haf1 hd1 double mutant headed as late as hd1 plants under short-day conditions but exhibited a heading date similar to haf1 under long-day conditions, thus indicating that HAF1 may determine heading date mainly through Hd1 under short-day conditions. Moreover, high levels of Hd1 accumulate in haf1. Our results suggest that HAF1 is essential to precise modulation of the timing of Hd1 accumulation during the photoperiod response in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in Rice.

The photoperiodic response is one of the most important factors determining heading date in rice (Oryza sativa). Although rhythmic expression patterns of flowering time genes have been reported to fine-tune the photoperiodic response, posttranslational regulation of key flowering regulators has seldom been elucidated in rice. Heading date 1 (Hd1) encodes a zinc finger transcription factor that ...

متن کامل

The role of COP1 in repression of photoperiodic flowering [version 1; referees: 2 approved]

Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encod...

متن کامل

The role of COP1 in repression of photoperiodic flowering.

Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encod...

متن کامل

The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress.

The timing of flowering is coordinated by a web of gene regulatory networks that integrates developmental and environmental cues in plants. Light and temperature are two major environmental determinants that regulate flowering time. Although prolonged treatment with low nonfreezing temperatures accelerates flowering by stable repression of FLOWERING LOCUS C (FLC), repeated brief cold treatments...

متن کامل

The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis

Floral transition is influenced by environmental factors such as light and temperature. Plants are capable of integrating photoperiod and ambient temperature signaling into their developmental program. Despite extensive investigations on individual genetic pathways, little is known about the molecular components that integrate both pathways. Here, we demonstrate that the RING finger-containing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015